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1964), although in these two examples the reduction 
already almost vanishes at the second reflexion, which 
is very close to the first one in angular position. The 
reduction found in the present study, however, is too 
small to conclude therefrom the existence of solid state 
effects. It is also to be mentioned that the present X-ray 
diffraction data do not give any information about the 
region below sin 0/2 = 0.25 A -1. 

It is apparent that the contradictory results found 
by various authors are related to the techniques used 
for determining the intensity data on the absolute basis. 
In measurements of this kind, it is necessary to pay 
much attention to detailed experimental conditions. 
For example, we have found that an inaccuracy of 
+ 0.2 ° (in 20) in the zero alignment (Batterman et al., 
1960) may result in an error of + 5% in the integrated 
intensity when 0 =  10 °, if the receiving slit is very nar- 
row. 

As was pointed out at the Seventh International 
Congress of Crystallography in Moscow 1966 (In- 
formal Session on the Powder Intensity Project), it is 
very desirable to have a standard powder specimen for 
X-ray intensity measurements, because with such a 
specimen a relative measurement can readily be con- 
verted to an absolute one. In the light of our measure- 

ments, carbonyl iron seems to be suitable for the pur- 
pose. This powder is stable, and identical specimens 
will be available in different laboratories because of a 
well standardized procedure for the preparation of this 
substance. 
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Linear equations are derived which express constraints on the structure factors of a crystal having more 
than one identical molecule or subunit in the asymmetric unit. Solution of these equations leads to a 
series of functions having the required non-crystallographic symmetry. Any structure having the 
postulated symmetry can be expressed as a linear combination of these functions. This approach has 
the advantage that far fewer variables are needed to describe the system to a given resolution than in 
the conventional method using amplitudes and phases. The reduction in the number of variables is 
used as a measure of the information content of the equations. 

Introduction 

It has been shown (Rossmann & Blow, 1963; Main & 
Rossmann, 1966) that, when a crystal contains more 
than one identical molecule or subunit per asymmetric 
unit, equations can be set up which imply constraints 
on the phases of the structure factors. These equations 
contain certain parameters relating to the relative ro- 
tational and translational positioning of the subunits 
within the asymmetric unit. However, there exist meth- 
ods for determining these parameters (Rossmann & 
Blow, 1962; Rossmann, Blow, Harding & Coller, 1964) 
and it is assumed in all that follows that their values 
are known. 

lterative methods for solution of the equations have 
been proposed which, for a number of simple trial 
structures, appear to converge to a unique answer, 
agreeing well with the known phases (Rossmann & 
Blow, 1964; Main & Rossmann, 1966). Both these 
papers attempt to derive values for the unknown 
phases and in doing so formally separate the amplitudes 
and phases of the structure factors as they appear in 
the equations. This means that the equations to be 
solved are non-linear from the beginning of the cal- 
culation. 

The methods described in this paper formally keep 
the amplitude and phase together as an unknown com- 
plex structure factor. The equations are now linear in 
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these complex structure factors and the powerful tech- 
niques of linear analysis can be applied to the system. 
It will be shown that to a given resolution there is 
only a finite number of independent density distribu- 
tions which satisfy the non-crystallographic symmetry 
and that this number is considerably less than the num- 
ber of phases needed in a conventional description of 
the system to this resolution. These density distribu- 
tions are the Fourier transforms of a degenerate set 
of eigenvectors corresponding to a multiple eigenvalue 
of the matrix describing the geometry of the system. 
Such degenerate systems of eigenfunctions are familiar 
in quantum mechanics and other brances of applied 
mathematics. The important point about them is that 
any function which satisfies the conditions of the prob- 
lem can be expressed as a linear combination of the 
allowed eigenfunctions. Thus, to solve a structure hav- 
ing known non-crystallographic symmetry, it is neces- 
sary to determine the coefficients in the expansion of 
the structure in terms of the allowed eigenfunctions. 
Since only the intensities of the diffraction pattern are 
available the equations for these coefficients are non- 
linear, but the number of unknowns is now much smal- 
ler than the number of phases that would have to be 
found in a conventional structure determination. 

? 
F~ = IFhl e x p ( - i % ) =  V\  ~o(x) e x p ( - 2 n i h ,  x)dx. 

d unit 
cell 

Using assumption (c) we may write this as a sum of 
integrals taken over the subunits 

~ f u~(x) exp(- 2nih " x)dx " F~ = V j= 

Transforming the variable of integration we have 

F ~ =  V ~ f ~o(xj) e x p ( - 2 n i h ,  xj)dxi. 
j = l  UI 

We now have to express the identity of the subunits, 
assumption (b), in such a way that the algebraic sym- 
metry is retained. This may be done by equating all 
the densities 0(xj) in turn to ~o(xi), then to 0(x2) and 
so on, thus generating the n relations 

F~' = V Z" f ~o(xe) e x p ( - 2 n i h ,  xj)dxl, (k= 1,n). 
j =  I U1 

We may now add these n expressions giving 

nFt = f e×p(-2.in, xj)dx . 
J= L;.k = t u~ 

Replacing ~o(xe) by its Fourier series expansion 

Setting up the equations 

Let us now derive, in a suitably symmetrized form, 
the equations that the structure factors must obey 
when a crystal contains n identical subunits per asym- 
metric unit. For simplicity we consider space group 
P l, though the results can readily be extended to space 
groups of higher symmetry. In setting up the equations 
it is assumed that 

(a) the geometry of the subunits is known; 
(b) the subunits are identical; 
(c) the density between the subunits is zero; 
(d) the density is real. 

One subunit U1 is taken as the reference subunit and 
the positions of the other subunits Uj are specified 
relative to this. Suppose the position xj of an element 
of density in the j th  subunit is related to the position 
xi of the corresponding element of density in the refer- 
ence subunit by 

xj = Cjxl + dj, ( j =  1,n), 
where Ct = I, dl = 0,  
so that ~o(Cjxl + dj) = ~o(x~) 

when xl lies within Ul. We may write the complex 
structure factor F h as 

Fh= IFhl exp(i%)= V ~(x) exp(2nih, x)dx. 
unit 
cell 

For reasons which will appear later it is more con- 
venient to use assumption (d) and to work with the 
complex conjugate relation 

1 
0(xk) = ~- S Fp e x p ( - 2 n i p ,  xe) 

p gives 

F~,= ...... 1 ~. z~ f X Fpexp(- -2nip .xk)  
/// j = l  k--1 UI p 

e x p ( - 2 n i h ,  xj) dXl , 

which, after rearrangement, becomes 

F~=Z'p Fp { ~  j=,-~ k=, ~" fu, exp[--2n/(h, x j + p .  xk)]dxl}. 

This may be written more compactly as 

F~ = Z BhpFp , (1) 
where p 

Bnp= _1_ ~. _~ I exp[ -2n i (h ,  x j + p .  xk)]dxl . 
17 j -= l  k = l  t)UI 

It is shown in the Appendix that these equations re- 
lating the structure factors are not only a necessary 
consequence of the identity of the subunits, but are 
also sufficient to ensure that identity. 

Matrix formulation of the equations 

The equations (1) express the value of an arbitrary 
structure factor F~, as a weighted sum of structure fac- 
tors Fp taken over the whole of reciprocal space. The 
weighting factors Bhp are expressed in terms of the 
shape and the relative rotational and translational par- 
ameters of the subunits within the asymmetric unit and 
are assumed calculable. For the purposes of computa- 
tion it is necessary to truncate the summation over 
reciprocal space after a finite number of terms. Since 
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the weighting factor falls off fairly rapidly with in- 
creasing distance between the points p and h in recip- 
rocal space, it may be assumed that the truncation 
affects significantly only those reflexions lying close to 
the boundary of the region of reciprocal space being 
considered. 

It is convenient at this stage to denote the reflexions 
F h and Fp by scalar suffixes as Fr and Fs, the Friedel- 
related reflexions being denoted by F-r and F-s. The 
equations (1) now become 

N 
Z BrsFs=F*, ( r=  - N  . . . .  N ) ,  

S = - - N  

or, writing this in matrix notation, 

BF = F* ,  (2) 

where B is the (2N+ 1)× (2N+ 1) complex matrix of 
weighting factors and F is the complex column vector 
of structure factors 

F-- F0 • 

We now combine equation (2) with the Friedel rela- 
tionship which can conveniently be written in matrix 
form as T F = F * ,  (3) (0 ,). 
where T = • ' , T 2 = ! .  

1 0 
Premultiplication of the vector F by the matrix T has 
the effect of interchanging Fr and F-r, ( r=  1,N), so 
that T is in fact a re-ordering matrix. Combining (2) 
and (3) we have BF=  TF 

or HF = F (4) 
where H = TB. 

Therefore ( H -  I)F = 0 .  (5) 

It can be seen from their definition that the elements 
of matrix B obey the symmetry relation 

B-s-r = B*rs 

so that B is Hermitian about its second diagonal. Pre- 
multiplication by the matrix T has the effect of inter- 
changing the diagonals, so that the matrix H is Her- 
mitian about its leading diagonal (i.e. Hsr = Hr* ). The 
rather complicated manipulations used in deriving the 
equations were necessary in order to produce a matrix 
H of Hermitian type, thus simplifying further theory 
and computation. 

Solution of the equations 

The expression (5) represents a set of (2N+ 1) homo- 
geneous linear equations in the (2N+ 1) complex vari- 
ables Ft. Because of the way the equations were con- 

structed, any solution of them will satisfy the Friedel 
relation and will have a Fourier transform which has 
identical density distributions inside the subunits and 
zero density outside the subunits. In general, however, 
there will be more than one independent solution and 
the general solution will be a linear combination of 
these. 

To discover how many independent solutions there 
are to equations (5) we must consider (4) as a special 
case of the general eigenvalue problem 

H F = 2 F .  (6) 

By comparing (4) and (6) we see that any eigenvector 
of H corresponding to an eigenvalue 2 =  1 will be a 
solution of equation (5). Conversely the number of 
linearly independent solutions of (5) is equal to the 
number of unit eigenvalues of the matrix H. Since H 
is Hermitian all its eigenvalues are real and it is pos- 
sible to construct a set of (2N+ 1) orthonormal eigen- 
vectors. 

Let us suppose that H has m unit eigenvalues and 
let us denote the corresponding orthonormal eigen- 
vectors by (Ul,...urn). If we have a problem in which 
the density p(x) satisfies the postulated conditions of 
localization and local symmetry, it is possible by the 
above argument to express its transform F as a linear 
combination of the eigenvectors ( u l , . . .  urn), namely 

F = ~ , u j u j .  
j = l  

By taking the Fourier transform of this equation we 
could equally well express the relation in real space 
(to the resolution to which we are working) and write 

o(x)= -~ m~j(x), 
j--I 

where Qj(x) represents the Fourier transform of the 
eigenvector uj. The functions 0j(x) will be referred to 
as 'eigendensities'. It is important to note that the / t j  
are real, since Q(x) is real and since ~oj(x) are real be- 
cause uj were constructed to satisfy the Friedel relation. 

The eigendensities 0J corresponding to an ortho- 
normal set of eigenvectors uj are also orthonormal, in 
the sense that 

ljk = Iunit ~oj(x)~ok(x)dx = &k. 
cell 

This may be shown by replacing the densities by their 
Fourier series giving 

Ilk = f f U,h exp(- -2nih ,  x)X Ukp exp(- -2nip ,  x)dx 
unit p 
cell 

= X S ujhu~, I 
h p unit 

cell 

e x p [ -  2ni(h + p) .  x]dx.  

The integral vanishes unless p =  - h  so that 
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]Jlc = ~F UihUk,_h 
h 

= ~ ,  IdlhUkh 
h 

since u~ satisfies the Friedel relation. Hence by the 
orthonormality of the eigenvectors we have 

I j t ; =  (~1/c . 

We have so far considered only those eigenvectors 
and eigendensities corresponding to unit eigenvalues. 
What meaning can be attached to those eigenvalues 
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Fig. 1. Eigendensities and corresponding eigenvalues for a 
one-dimensional cell, line group l, containing two identical 
subunits, each of fractional size 0.357 with centres at 0 and 
0-431 respectively, reflexions from h = - l0 to h-- + l0 being 
included. 
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Fig.2. Eigendensities and corresponding eigenvalues for a 
one-dimensional cell, line group 1, containing three identical 
subunits, each of fractional size 0.29 with centres at 0, 0.33 
and 0-63 respectively (Main & Rossmann, 1966), reflexions 
from h = - l0 to h = + 10 being included. 

which are not unity? It is shown in the Appendix that 
an eigenvalue )q can be expressed in terms of its cor- 
responding eigendensity by 

Isubunits [as(x)]2dx- a~ 
)4-- , (7) 

I [ a j ( x ) ] 2 d x  
unit 
cell 

where o~ is a measure of the lack of equality of density 
within the various subunits. The first term in the nu- 
merator is a measure of the fraction of the total den- 
sity which lies within the subunits and the denominator 
is a normalizing factor. The form of (7) implies that 
0<;V_< 1. If there is no density outside the subunits 
and the densities within the subunits are identical, so 
that a~ = 0, equation (7) gives )q = 1, as expected. If all 
the density lies outside the subunits, 2g = 0. Some com- 
binations of non-zero densities within the various sub- 
units can also lead to a zero eigenvalue, though the 
exact form of these densities depends on the number 
of subunits. 

Figs. 1 and 2 show the eigendensities and corre- 
sponding eigenvalues for two one-dimensional exam- 
ples containing 2 and 3 subunits respectively. In each 
case reflexions from h= - 10 to h= + 10 are included. Be- 
cause we are considering a truncated system and be- 
cause of rounding errors during calculation there are 
no exactly unit eigenvalues. Also in any real problem 
the postulated conditions, in particular that of vanish- 
ing density outside the subunits, will not be exactly 
fulfilled, so that it is not clear how far an eigenvalue 
can depart from unity, while still considering the cor- 
responding eigendensity as allowable. This will be dis- 
cussed further in the next section. If we consider an 
allowed eigendensity to be one corresponding to an 
eigenvalue k>0.95, the two subunit case has six al- 
lowed eigendensities and the three subunit case has five. 

Fig. 3 shows the eigendensities corresponding to the 
six largest eigenvalues for a two-dimensional case with 
two identical subunits. 

As might be expected the behaviour within the sub- 
units of the one-dimensional eigendensities is similar 
to that of the classical orthogonal polynomials. With 
increasing number of zeros in the interval the fitting 
that can be achieved, while working to a given resolu- 
tion, becomes steadily worse and this is reflected in an 
increasing departure from unity of the corresponding 
eigenvalue. In the two-dimensional example of Fig.3 
it can be seen that the behaviour of the eigendensities 
within the subunits is analogous to the normal modes 
of vibration of a rectangular membrane, though there 
are departures from this because of the unsymmetrical 
disposition of the subunits. 

Information content of the equations 

Let us now consider the above problem in a different 
way. Suppose we have a structure which is unknown, 
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but which has the postulated local symmetry,  and that  
to a given resolution we have measured the intensities 
of N independent reflexions. In a conventional struc- 
ture determination N phases have to be found. Using 
the above analysis, however, only m real parameters  
have to be determined, namely the coefficients in the 
expansion of the t ransform in terms of the m known 
allowed eigenvectors. We may write 

m 

F =  £" p ju j .  (8) 
j=l 

Since only the intensities of  the reflexions are available 
the equations from which /q  have to be found are non- 
linear, namely 

IF~[2= ~ ~ IUj,UkUThUXa, (h=0,1 , . . .  N ) .  
j = l  k = l  

The number of equations is now much greater than 
the number of unknowns and it should be possible to 
find best values of the parameters pj by a non-linear 
least-squares process, using a sliding filter of the type 
described by Diamond (1966). Using this technique it 
is possible to decide how many eigenvectors to include 
at each stage of the fitting procedure and in particular 
to decide how many eigenvectors are allowable. If  the 
uj are or thonormal  the form of (8) implies an overall 
scale factor for the problem, since t h e / q  must  satisfy 
the relation N m 

z _  Z IFnl 2 X p j -  
j = l  h =  - - N  

In Fig.4 the number  of allowed eigendensities is 
plotted against  the number  of independent reflexions 
included, for a series of one-dimensional problems con- 
taining 2, 3 and 4 subunits respectively. In this context 
eigendensities corresponding to eigenvalues 2>_0.95 
have been considered allowable. It can be seen that  
the plots are linear, though their exact form for a given 
number  of  subunits will depend on the size and posi- 
tioning of  the subunits. The fact that  the plots do not 
pass through the origin means that  there is a certain 
minimum number  of reflexions that  has to be included 
before it is possible to generate an eigendensity which 
satisfies the conditions of  the problem. The gradient  
of  the plots, or the fractional decrease in the number  
of  parameters  needed to describe the system, can be 
considered to represent the information gained by this 
method of analysis. For  reasons given below the ex- 
pected fractional gain of information for the case of  
an asymmetric  unit containing n subunits is about  1/n. 
However  it can be seen f rom Fig.4  that,  at least for 
one-dimensional problems, this expected gain is not in 
general achieved. In two and three dimensions the in- 
format ion gain should be closer to that  expected. 

To discover the information gain to be expected 
from the equations let us consider a degenerate case 
of 2 subunits, which completely fill a one-dimensional 
cell. The condition of equality of  density within the 
subunits is now as strong as possible and the symmetry 
becomes truly crystallographic;  we have a doubled unit 

cell. The matrix H for this system has alternating + 1 
and - 1 along the diagonal and zeros off the diagonal,  
so that all its eigenvalues are + 1. For  convenience let 
us truncate the system at h = + 2, so that  

1 _ i  

H =  1 
- 1  

0 

0) 
1 

0.999 

0.998 
I ~-" xo  

<:5 Q 

0989 

0.999 

0.994 

/i:( 

0.962 

Fig. 3. Eigendensities corresponding to the six largest eigen- 
values for a two-dimensional square cell, plane group pl, 
containing two identical subunits related by a rotation of 
194 ° about the centre of the cell. The subunits are enclosed 
within rectangular boxes of fractional dimensions 0.4 x 0.8 
and the centre of the reference subunit is at x=0.25, y=0,  
as shown in the first diagram of the series. The innermost 
49 reflexions are included. 

m 

30 n=2 ~ n=3 

n=4 

1; 2'0 3'0 4'0 s 

Fig. 4. Plots of m, the number of allowed eigenvectors, against 
N, the number of independent reflexions included, for 
one-dimensional examples containing 2, 3 and 4 identical 
subunits. Allowed eigenvectors are those corresponding to 
eigenvalues ).>_0-95. For n=2, subunit size=0.357, subunit 
centres at 0 and 0.431. For n = 3, subunit size = 0.29, subunit 
centres at 0, 0-33 & 0-63. For n--4, subunit size=0.21, 
subunit centres at 0, 0.22, 0-46 and 0.72. 
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An orthogonal set of eigenvectors satisfying the Friedel 
relation can be constructed by inspection, namely 

i 
0 

0 

for 2 = + 1  , 

0 o 
1 

and 0 O for 2 = - 1  . 
1 - i  
0 0 

According to our interpretation the transform of the 
structure must be expressible as a linear combination 
of eigenvectors corresponding to eigenvalue 2 = + 1, so 
that F-1 = F~ = 0. By considering a more extended sys- 
tem it can be seen that Fh vanishes for all odd h, and 
this is of course what one expects for a doubled unit 
cell. The fractional gain in 'information' according to 
the above definition is thus ½-, meaning that the number 
of variables to be determined has been halved, though 
in this case it is because half the amplitudes are iden- 
tically zero. A similar argument leads to an expected 
fractional gain of information of 1In in the n subunit 
case. 

The preceding example takes into account only the 
identity of the subunits, which has been made as strong 
as possible, and does not consider the vanishing of 
density between subunits, which occurs in more realistic 
structures. It is possible however, while omitting the 
identity of the subunits, to set up structure factor equa- 
tions of a very similar type to those already derived, 
relying only on the vanishing of the density outside 
the subunits to give phase information [i.e. using only 
assumptions (a), (c) and (d)]. A similar eigenvalue 
analysis shows that these weaker equations give little 
information unless the subunits are made to fill an 
unreasonably small fraction of the unit cell. Thus the 
above analysis, although of a degenerate system, indi- 
cates an expected fractional gain of approximately 1/n 
in the general n-subunit case. 

Appendix 

We wish to derive the relation (7) between an eigen- 
value 2j and its corresponding eigendensity Qj(x). The 
eigenvalue equation is 

Huy = A/u:. 

Taking the scalar products of this with u~ z, the Her- 
mitian transpose of uy, gives 

u~tHu: = 2juf. u:. 

u~Hu: 
2:= -u~--ui " (9) 

Therefore 

Now 

Also 

N 

U~ / . UJ = h f__NIHJhl 2 =  [~)/(X)] 2 d x "  
unit 
cell 

ufHu: = Z S uThH~vu:v • 
tt p 

Substitution for H~v gives 

(10) 

u~Huj=Z'h "SuTnuJP{ l p  k=l ~ l=lz~ I exp[--2niu (h.x/c 

p .  xz)]dxx}. + 
J 

Therefore 

= fsub- 
units 

1 (, 

u~Huj = n k=, ,=, Iv~(x~)~°~(xz)dx~ (11) 

[ej(x)12dx- --- [ e j ( X k )  --  eg(Xl)]2dxl  
n k = l  1=I ,]Ul 

= Isub- [0J(x)lZdx-a~' (12) 
units 

where a] is a measure of the lack of equality of the 
subunits, comparing them in pairs in every possible 
way. Combining (9), (10) and (12) leads to the required 
relation between an eigenvalue 2j and the correspond- 
ing eigendensity ~oj(x), namely 

2 : -  

fsub-[0J(x)lZdx- a~ 
units 

Iunit  [~°J(x)]2dx 
cell 

The form of this expression implies that 2 < 1, equa- 
lity occurring only if all the subunits are equal, and 
if there is zero density outside the subunits. We have 
therefore shown that any solution of the structure fac- 
tor equations (1) derived above does satisfy the as- 
sumptions (a)-(d). 

By writing (11) in the form 

u~Huj = nll v ! f  ~°J(xk)]Zdxl 

we obtain the alternative expression for 2j, 

2 j= 
1 f ! f  ~J(xk)]Zdxl 
n u 

. . . . . . . . .  

Iunit L°J(x)]2dx 
cell 

from which it follows that )4 must be positive. We 
have therefore shown that the eigenvalues of the matrix 
H satisfy 0 < 2j _< 1. 
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An optical apparatus is described for the direct interpretation of Laue photographs. It presents the 
results in the form of radial projections of the lattice-plane normals on a spherical surface. 

For the interpretation of Laue patterns graphical 
methods are available which lead either to the gno- 
monic or to the stereographic projection. In order to 
eliminate the point-by-point plotting involved in these 
procedures, we have tried to find an optical method 
capable of yielding the required projection of a large 
area of the film simultaneously. Moreover, we aimed 
at a radial projection of the lattice plane normals on 
a spherical surface, because this allows direct recogni- 
tion of symmetry elements even for arbitrary crystal 
settings. Such elements are, indeed, hard to find from 
the above-mentioned plane projections. On the other 
hand, the advantages of the latter (angle-true image 
by stereographic projection, easy recognition of zones 
by the gnomonic one) are obviously retained in full 
in the radial projection. 

The basic idea of the resulting method is explained 
in Fig. 1. A Laue photograph (L) is placed before a 
point source (O), in such a way that the geometry of 
light source and film, while being projected, is exactly 
the same as the geometry of crystal and film while the 
latter was exposed. A light-ray going from O to a spot 
S on the film then corresponds to the X-ray pencil 
which caused this spot. 

After passing the film, the light-ray is reflected at 
P by a curved mirror to a ground glass sphere, inter- 
section Q. Upon this sphere, a distorted shadow pro- 
jection of the film is formed. Now the distortion has 
to be such that the line OQ be perpendicular to the 
lattice-plane (V) which diffracted the X-rays in the di- 
rection OP. 

The film is shown as a cylinder in Fig. 1, but it will 
be clear that any film shape can be used, provided the 

geometry of the film-holder of the optical apparatus 
is again identical with that of the X-ray camera. 

It will be equally clear that the mirror shows rota- 
tional symmetry, with XO, which corresponds to the 
direction of the incident X-rays, as axis. The shape of 
the mirror-curve is not yet fixed by the condition im- 
posed. The condition leaves one degree of freedom so 
that the axial plane contains an infinite number of curves 

V 

/ 
/ 

R/ 
/ 

/ 
/ 

/ 
/ 

Fig. 1. Geometry of the instrument. 


